Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have created the most comprehensive map to date showing how antibodies attach to the SARS-CoV-2 virus, which causes COVID-19, and how viral mutations weaken that attachment. The findings, published in the November 21 online issue of Cell Systems, a Cell Press journal, explain why variants like Omicron can evade immune defenses and suggest new strategies for building longer-lasting antibody therapies and vaccines. The team analyzed more than a thousand three-dimensional structures of antibodies bound to the virus’s spike protein, the main target for immune recognition, and compiled them into a structural atlas of COVID-19 antibodies. By studying these structures together for the first time, the researchers revealed a detailed picture of how the immune system targets the virus and how the virus evolves to evade it. 

Read More